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Single-molecule magnets (SMMs) have been the focal point in /
the magnetochemistry field for intense study of quantum tunneling
and slow relaxation of the magnetization in the past decade. To
understand the correlation between the structure and magnetic
properties, this family of SMMs is rapidly growing. Up to date,
the single-molecule magnet behavior has been observed in the
complexes, including Mn, Fe, V, Co, Nior rare eartR.In these
SMM structures, most consist of a metalxo or carboxylate cluster
core. CN group, as the very efficient bridge mediating the strong
magnetic coupling interaction between metal ions, is scarcely
introduced in the SMMsdue to the difficulty in the design and
the synthesis for the superparamagnetic cluster containing the first
transition metal ions. Hasimoto’'s and Decurtins’ groups first 7 \
synthesized octacyanometallate-based clusters with hight spin Figure 1. Structure of{ Cd'g[MVY(CN)gle*(CH3OH)24} cluster forl (M =
utilizing WY(CN)g3~ and Md&(CN)s*~ as the building blocks, W) and2 (M = Mo). Sphere colors: green, W or Mo; pink, Co; gray, C;

respectively, but no available evidence was obtained for their single- P'4€: N: red. O.

molecule magnetic behavior in the physical measurements. It is 100 -

suggested that the Mn(ll) ion is not a good candidate for SMMs. ol 2

However, investigating the magnetism of octacyanometallate-based ol % - .

clusters is obviously significant for SMMs due to the relative high = 7ol ﬁ Eup

spin ground states. For observing possible single-molecule magnetic E ol 18 E : /
properties in this system, we tried introducing the atoms with 2 ol é % it —o—Co,
anisotropy and spinorbital coupling into the superparamagnetic ;“:’ wl di-. T L”: e
cluster, such as substituting Co(ll) ions or lanthanide for Mn(ll) 3 o,

ions, and synthesized two novel octacyanometallate-based clusters, or M-Ségga%_.&q%___ )
{CA'o[WY(CN)gle*(CH3OH)24} - 19H;0 (1) and{ C0'g[MoV(CN)gle* or Teeestus
(CHzOH)y4} -4CH;OH-16H;0 (2). Both complexes show the single- %0700 150 200 250 300
molecule magnetic properties though the structures are similar to TIK

MngWs and MrsMoe.* Figure 2. Plots ofywT versusT for 1 and2 at a field of 0.1 kG. Insert is

Both 1 and 2 were synthesized by the reaction of 2 equiv of the field dependence of magnetization at 1.8 K. The solid line is the guide.
CoCh+6H,0 with 1 equiv of Ng[MV(CN)]Jg-4H,O (M = W, Mo)
in the methanolic solutions, below 2C in the dark. The dark-red (7.086 A)4aIn fact, the spatial configurations of \CN)g3~ ions
well-shaped crystals for single-crystal X-ray structure analysis was and the free solvent molecules in the lattice malemd2 different
obtained after several days. The crystal is highly moisture sensitive. from MngWs*2 in the structure and the symmetry.
So, all physical measurements were performed by covering liquid  The magnetic susceptibilities of complexieand? at an applied
paraffin on the crystal. field of 0.1 kG are shown as theT versusT plots in Figure 2.

X-ray analysi8 revealsl and 2 crystallized in a lower space For 1 at room temperaturegyT is 20.2 emeK-mol~1, which is
group than did Mg\We.% Both 1 and2 are comprised of nine Co  slightly higher than the spin-only value of 19.13 eiidemol - for
ions and six M(CN)s [M = W (1) or Mo (2)] ions bridged by the Cd'gWVg unit (Sco = 32, Sw = Y andg = geo = gw = 2).
cyanides leading to a six-capped body-centered cube (Figure 1).When the temperature is decreasggl gradually increases. Below
Two MY(CN)g®~ ions adopt bicapped trigonal prismatic geometry, 50 K, yuT rapidly increases and reaches a maximum of 85.2
and the others favor dodecahedron. AlV(@N)s®~ ions provide emuK-molt at 8 K, and then sharply decreases below this
five CNs each to connect with €dons constructing the cluster  temperature. This maximum value is higher than 60.4-&muol !
skeleton, while the remaining three CNs are terminal to face out based on a ground-state sf@n= 2%/, of antiferromagnetic coupling
of the cluster. Eight Co atoms are located at the corners of the between Chand W ions but is much less than 144.4 etdemol—?
cube with distorted octahedral environment, and each accepts threeon S = 3%, of ferromagnetic coupling. Considering the strong
CN ligands for the skeleton. Other positions are occupied by orbital contribution of the Cbions, which leads to an average
methanol molecules. The ninth one is at the center of the cube, value that is much higher than 2, it is suggested that there is the
which is coordinated by six N atoms from the bridging CNs. The presence of antiferromagnetic exchange betweéna@d W ions
shortest intercluster CoW and Co--Mo distances are 6.993 and in this complex. Thus, an overad value is estimated to be 2.37
6.973 A, respectively, which are comparable with that ingWg on a basis of the maximupyu T and Sy = 2%,. Consequentially, a
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- ™ detail because observed peaksiii—T plots are not convenient

a for the investigation on magnetism. The additional evidencé of
3° “’5 and 2 bearing the SMM behavior is the magnetization versus dc
&* i field measurements. Both plots of reduced magnetizafibiNg)
i ”g versus H/T of 1 and 2 (Figures S2 and S3 in Supporting

Information) show that the isofield lines do not superimpose,

“ ? indicating significant magnetic anisotropy (zero-field splitting) in
, : the ground state.
s In conclusion, for the first time, we successfully introduced a
E: ‘? Co(ll) ion with anisotropy and spinorbital coupling into an
‘E’ 3 23 octacyanometallate system and synthesized twgh6; (M = W
3 f g and Mo) clusters. The observed magnetic behaviors display the
. 0 nature of SMMs. Comparing the magnetic properties and the
p

structures of MMV (M = W and Mo)# the substitution of metal

ions is obviously the main reason thhiand 2 exhibit the SMM
Figure 3. AC magnetic measurements for(left) and 2 (right) atHac = behaviors
5 G andHg. = 0 '
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consistent with the observed value of 286 mol~* in the variable- Supporting Information Available: X-ray structural data in CIF
field magnetic measurements at 1.8 K (insert in Figure 2). The latter format, and more magnetic data bind2. This material is available
is higher than theyyT value at room temperature because the free of charge via the Internet at http://pubs.acs.org.
intracluster ferromagnetic order may lead to a minimwT at a
temperature higher than 300 K. Similar behavior was also observe
in other octacyanometallate-based magfets.

Complex2 shows magnetic behaviors very similar to thosé of
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I > 20(1)] for 1 andR1 (WR;) = 0.0506 (0.1168) [for 12 238 reflections
magnet behaviote8 Therefore, complex is a new example of Francis: London, 1993.
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